

 Navigation

 	
 index

 	
 next |

 	underworlds 0.1 documentation

Welcome to underworlds’s documentation!

Underworlds is a distributed and lightweight framework that aims at sharing
between clients parallel models of the physical world surrounding a robot.

The clients can be geometric reasoners (that compute topological relations
between objects), motion planner, event monitors, viewers... any software that
need to access a geometric (based on 3D meshes of objects) and/or temporal
(based on events) view of the world.

One of the main specific feature of Underworlds is the ability to store many
parallel worlds: past models of the environment, future models, models with
some objects filtered out, models that are physically consistent, etc.

This package provides the library, and a small set of core clients that are
useful for inspection and debugging.

Main concepts

At very high-level, Underworlds can be seen as a shared (across threads
and process) datastructure that represents on one hand geometric
scenes (made of 3D meshes for instance) and on the other hand the
history of these scenes as timelines. A pair (3D scene, timeline)
forms a world.

A world is a 3D scene and its history, represented as a timeline

Underworlds allows to create, alter, query, compare these worlds, their
scences and timelines in a distributed fashion: one software component
may track the 3D position of humans around the robot, while another
detect some objects on tables, while another expose the current pose of
the robot itself. A fourth module may query these models to perform some
motion planning, a fifth one performs geometric reasoning using a
physics engine, and so on.

Combining several processes in a cascade of worlds

The core library comes with a few useful components that can be used as
starting points for your own components.

uwds-load for instance opens a static 3D model (like
a FBX file) and adds it to a specific world. Let’s see how this example
work.

The interesting part of the loading takes place in the method load of
ModelLoader:

First, we create a context: the context encapsulates a connection to
the shared datastructure. We give each context a name (typically, the
name of the component – here model loader): this is useful to
debug/introspect the system.

with underworlds.Context("model loader") as ctx:
 # ...

The context object ctx gives access to the shared worlds. For
instance:

ctx.worlds["test"]

either returns the world test if it already exists (some other
component may have created it, for instance) or it creates a new one
(which becomes immediately visible and accessible to every other
software components connected to the Underworlds server).

Next, we can access the scene and the timeline attached to this world:

world = ctx.worlds["test"]
scene = world.scene
timeline = world.timeline

Keep in mind that world, scene, timeline are datastructures
shared amongst all the software components (clients) connected to the
server! A scene or a timeline can be updated at any time by any
component! While you iterate over a scene (for 3D rendering for
instance), Underworlds makes no guarantee that the objects (nodes) will
remain constant during the iteration, and you need to be especially
careful for inconsistencies.

To avoid these inconsistencies as much as possible, software components
are therefore generally advised to only write to worlds that they have
themselves created. This is however not enforced, and sometimes it makes
perfectly sense to have several components updating together the same
world. One example could be several perception modules that estimate in
parallel the pose of different objects: they would typically update a
same world called for instance raw perception.

Scenes and nodes

A scene represents a 3D environment, made of a set of nodes: a node
can represent either a physical object (or part thereof), or a camera
(more types of nodes may be added in the future, like fields). The
node itself has several properties
like a unique identifier, a name, possibly a list of children nodes, a
3D transformation matrix relative to its parent, etc.

Meshes are centrally stored

Besides, nodes that represent physical objects (node.type == MESH)
have meshes attached. Because meshes can represent a large amount of
data, they are stored by the server on a separate static store, indexed
by their hash value. This way, only the hashes of the meshes are stored
with the node. If a specific component need the actual mesh data (for
instance, for rendering), it must separately request the mesh data from
the Underworlds server (by calling ctx.get_mesh(<mesh hash>)).

Scenes always have one special node, the root node, and every other
node in the scene is utimately parented to this node. It can be access
with scene.rootnode.

to be continued...

3D rendering

The uwds-view client shows how the datastructures
provided by Underworlds can be used for realtime 3D rendering with
OpenGL.

This simple viewer can be used as a starting point for more complex
rendering applications.

Implementing a filter

Filters are a common pattern in a Underworlds-based system. We call a
Filter a software component that monitors a world A, processes somehow
its content, and generates a new world B which is a filtered version of
A. One possible example is a physics-based filter (see the diagrams
above): this filter would read the positions of various objects from a
‘raw’ world fed by the sensors. Because perception routines are usually
slightly inaccurate, some objects may be detected as if they were
inside others, or on the contrary flying in the air, above their
support. Using a physics engine, a physics-based filter would correct
these misdetections, and place the objects at stable locations. This
creates a new world that one could call stable world. This new world
could then be used as input for further processing by other reasonners,
planners, etc.

flying_filter.py implements a naive
version of such a physics-based filter (it simply makes flying objects
to ‘drop’ on their supports).

Full package documentation

	src
	underworlds package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	underworlds 0.1 documentation

src

	underworlds package
	Subpackages
	underworlds.helpers package
	Submodules

	underworlds.helpers.daemon module

	underworlds.helpers.geometry module

	Module contents

	underworlds.tools package
	Submodules

	underworlds.tools.loader module

	Module contents

	Submodules

	underworlds.errors module

	underworlds.server module

	underworlds.services module

	underworlds.situations module

	underworlds.types module

	Module contents

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	underworlds 0.1 documentation

 	src

underworlds package

Subpackages

	underworlds.helpers package
	Submodules

	underworlds.helpers.daemon module

	underworlds.helpers.geometry module

	Module contents

	underworlds.tools package
	Submodules

	underworlds.tools.loader module

	Module contents

Submodules

underworlds.errors module

underworlds.server module

underworlds.services module

underworlds.situations module

underworlds.types module

Module contents

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	underworlds 0.1 documentation

 	src

 	underworlds package

underworlds.helpers package

Submodules

underworlds.helpers.daemon module

underworlds.helpers.geometry module

Module contents

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	underworlds 0.1 documentation

 	src

 	underworlds package

underworlds.tools package

Submodules

underworlds.tools.loader module

Module contents

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	underworlds 0.1 documentation

Index

 Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		underworlds 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

apis.html

 Navigation

 		
 index

 		underworlds 0.1 documentation »

libunderworlds APIs

Except otherwise noted, all units follow SI. In particular, length are in meters
and angles in radians.

Node API

node

		<id> node.id

		<string> node.name

		<node> node.parent

		<node> node.entity: if the node belongs to a group (like a complex object),
the node that represent this entity.

		<matrix4x4f> node.transformation: transformation matrix, relative to parent

		<dict<string, ?>> node.properties

Base set of properties (these properties are guaranteed to exist):

		<string> type: type of the node

Currently existing types:

		MESH

		ENTITY: an entity has no mesh directly attached to it. It represents a logical group of nodes

		CAMERA

		Type specific properties:

		
		MESH
* <vec3f, vec3f> aabb: axis-aligned bounding box
* <vec3f, vec3f, vec3f, vec3f> bb: bounding box
* <id*> cad: if available, the set of mesh ID of the CAD model associated to the node
* <id*> hires: a high resolution model representing the node
* <id*> lowres: a low resolution model representing the node
* <id> collision: a mesh suited for collision detection
* <float> mass
* <vec3f> centerofmass: if defined, in the node frame. By default, the node origin.
* <vec3f> lookat: if defined, the direction vector of the object. Meaningful only for objects that have a well identified face.

		ENTITY
* <vec3f, vec3f> aabb: axis-aligned bounding box of the whole entity
* <vec3f, vec3f, vec3f, vec3f> bb: bounding box of the whole entity

		CAMERA
* <vec3f> lookat: the camera direction vector (ie, a 3D point in the camera frame, that is looked at by the camera)
* [TDB] camera frustrum and other features

Scene API

Low-level API

<node> gennode(): generate a new empty node, with its own unique ID.

add(node)
del(node)
update(node): node is an updated copy of an existing node. Only non-blank fields

are updated.

		<id> pushmesh(<vec3f*> vertices, <vec3f*> normals, <vec3i*> faces): adds a

		mesh to the meshes repository. Faces must be triangles.

delmesh(id): delete a mesh from the meshes repository.

High-level API

<node> get(name): returns a node by its name
<node*> get(<vec3f, vec3f> roi): returns all node whose bounding boxes are included in the ROI
<node*> getentity(name): returns all nodes belonging to the entity called ‘name’.

Monitors

Monitors are processes that are attached to a specific world. They monitor the
geometric scene, and produce events added to the world’s timeline.

Examples include:
* visibility_monitor: signal when a given entity or node is visible from a given camera
* touch_monitor: signal when two entities touch each other
* motion_monitor: signal when an entity is moving
* collision_monitor: signal when two entities are colliding [or about to collide?]

Filters

 © Copyright 2016, Severin Lemaignan.
 Created using Sphinx 1.3.1.

_static/comment-close.png

